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ABSTRACT

An extended Kalman filter for real-time ground attitude

estimation of a gyro-less spinning spacecraft has been developed

and tested. The filter state vector includes the angular

momentum direction, phase angle, inertial nutation angle, and

inertial and body nutation rates. The filter solves for the

nutating three-axis attitude and accounts for effects due to

principle axes offset from the body axes. The attitude is

propagated using the kinematics of a rigid body symmetric about

the principle spin axis; disturbance torques are assumed to be

small. Filter updates consist only of the measured angles

between celestial objects (Sun, Earth, etc.) and the nominal spin

axis, and the times these angles were measured.

Both simulated data and real data from the Dynamics Explorer -A

(DE-A) spacecraft were used to test the filter; the results are

presented. Convergence was achieved rapidly from a wide range of

a priori state estimates, and sub-degree accuracy was attained.

Systematic errors affecting the solution accuracy are discussed,

as are the results of an attempt to solve for sensor measurement

angle biases in the state vector.
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i. INTRODUCTION

The Kalman filter presented here was developed as part of a

continuing effort in the Attitude Analysis Section (Code 554.1)

at NASA/Goddard to investigate the potential of sequential

filters for spacecraft ground attitude estimation. The filter

was developed primarily to provide accurate real-time attitude

determination for spinning spacecraft to complement the batch

estimators that have been used up until now. Use of this filter

or a successor is planned in support of upcoming spinning

spacecraft missions such as SAMPEX/FAST.

Kalman filtering has the potential for obtaining attitude

estimates of comparable, if not superior, accuracy to currently-

used batch methods, since, like batch methods, it can use large

numbers of measurements in its solution, while, unlike them, it

also models dynamic noise. Moreover, it has the potential for

doing this in real-time with minimal human operator involvement,

unlike batch methods. The filter presented here was coded and

run on a 286-class IBM PC clone, in part to demonstrate the

potential of personal computers for computation-intensive

attitude estimation.

A complete modeling of the dynamics of an asymmetrical,

rigid spacecraft could probably be incorporated into a Kalman

filter, using, for example, the equations given in Melvin (1989).

Due to their complexity, however, it is not obvious that these

equations could be propagated quickly enough for real-time

attitude estimation using a PC. To retain a high degree of

accuracy while ensuring real-time performance, the highly linear

dynamics model used by Markley, et.al. (1988), which models the

nutational motion of an axisymmetrical rigid body, has been used.

Measurement equations are developed which, given a sensor

complement of a single Sun sensor and a single Earth sensor,

permit the filter to solve for the nutating three-axis attitude

of a spinning spacecraft. A discussion of systematic errors

affecting the spin axis estimate is given last, and those errors

which may be compensated for or solved for in the filter are

noted.

386



2. DYNAMICS MODEL

Spinning spacecraft are usually designed to spin about a

nominal spin axis, taken here as the body Z axis, Z b. The

deployment process usually imparts a nutational motion to the

spacecraft, however, which causes the nominal spin axis to move

on a elliptical cone about the spacecraft angular momentum vector

L at the inertial nutation rate Wl. If the principle axis of the

spacecraft Zp is offset from Zb, it is Zp that nutates about L,

while Z b revolves on a circular cone about Zp at the body

nutation rate w b in a motion called "coning" (Wertz, p.489).

Since the angular measurements returned by the attitude sensors

are referenced to Zb, its motion must be modeled for accurate

attitude estimation. It should be noted that most spacecraft

have nutation dampers to reduce inertial nutation, but this

motion is present to some degree most of the time.

The attitude of the spacecraft, given as the attitude matrix

Api which transforms a vector in an inertial frame into the

spacecraft principle axis frame, may be represented as the

product:

Api(t) = Apl(t) Ali(t) (i)

where Ali(t) = A 2(_/2-6) A 3(a)

Apl(t) = A 3(_) A I(8) A 3(@)

and where As(F) represents a rotation F about the jth body axis

(Markley, e_.al., (198_)). Matrix Ali , which transforms a vector

into an intermediate frame with the spacecraft angular momentum

vector along its Z axis, is introduced to separate the motions of

L and Zp. This is done since, for most spinning spacecraft, the

spin rate is chosen so that the integrated magnitude of all

disturbance torques acting on the spacecraft is negligible

compared to the magnitude of the angular momentum vector L. In

this case, the direction of L remains essentially constant, and

Ali is therefore constant as well; the spin axis attitude of the

spinning spacecraft is generally defined as the angular momentum

direction. Note that if the angular momentum direction were to

change rapidly, this motion could be modeled with a variation of

parameters approach (Kraige and Junkins (1976)).

Angles @, 8, and _ , which define the nutational motion of

the spacecraft about L, are given by complicated elliptic
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functions in time for the general case of a spacecraft with

unequal transverse principle moments of inertia (those

perpendicular to the spin axis) (Melvin (1989)). In the interest

of filter run-time performance, the filter presented here models

only the axisymmetrical case, in which the two transverse

principle moments of inertia are equal.

With the spacecraft assumed to be an axisymmetrical rigid

body experiencing negligible external torques, the attitude and

dynamics of the spacecraft may be described by the following

state vector equations (Markley, et.al. (1988)):

x = [ _, 6, _, e, @ , wI, Wp ]T (2)

& = [ 0, 0, wI, 0, Wp, 0, 0 ]T (3)

where

the right ascension and declination of the

angular momentum vector in geocentric inertial

(GCI) coordinates;

three 3-1-3 Euler angles specifying the attitude of

the nutating spacecraft with respect to the angular

momentum reference frame, where 8 is the constant

nutation angle and where _ and _ are (for small

nutation angles) basically rotations about the spin

axis; the sum _+_ is approximately equal to the

"phase angle";

w I = the inertial nutation rate at which Zp nutates

about the angular momentum vector L;

Wp = the body nutation rate at which Zb cones about Zp.

3. MEASUREMENT MODEL

This analysis assumes that all attitude measurements

received by the spacecraft are represented as the angle between

the nominal spacecraft spin axis, Zb, and a sensed reference

vector, V, known precisely in the inertial frame. The time of

this angular measurement is also used. While this model is a

simplification of measurements obtained by real sensors, it
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captures the essential attitude information and permits the

results to be compared easily with other vector-based approaches,

such as that, for example, given by Schuster (1983).

For each angle/time pair received from a each sensor, three

measurements are calculated as follows:

where

zI = cos( n ) (4)

z2 -- o. (5)

z 3 = 2_ / (t 2 - tl). (6)

= measured angle between V and Z b

t 2 = time of measurement

t I = time of previous measurement of V i by same sensor

The first measurement corresponds to the measured angle itself,

the second to the sine of a reference phase angle at the

measurement time, and the third to the total spin rate.

These actual measurements received from the sensors are

compared to three corresponding expected measurements calculated

by the filter from the propagated state estimate as follows:

hl = vi " Zb,i (7)

= viT [Ail(_,6) ] [Alp(_,8,_) ] Zb,p

h 2 = V i . T i (8)

= viT [Ail(U,6)] [Alp(_,8,#)] Tp

h 3 = w I + w b (9)

where

and

Tp = (Bp x Sb,p) / IBp x Sb,pl

Ail --

Alp --

Tp --

Bp --

Zb, p --

Zb, i --

Note:

the angular momentum-to-inertial attitude matrix

the principle-to-angular momentum attitude matrix

the measurement "trigger vector", principle frame

Sensor boresight vector, principle frame

the body Z axis Zb in the principle axes frame

the body Z axis Zb in the inertial frame

all the vectors above are of unit length.
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The difference h-z between the expected and actual

measurements is used to update the filter state and covariance.

Note that the measurement equations are non-linear in the state

parameters. Because of this, the notation and equations for the

extended Kalman filter have been used here.

4. KALMAN FILTER ALGORITHM

In this study, the standard extended Kalman filter equations

have been used, given as follows (Gelb, p.188):

State estimate and error covariance dynamic propagation:

x(t) = f(x(f),t)

P(t) = F(x(t),t)P(t) + P(t)FT(x(t),t) + Q(t)

(I0)

(11)

State estimate and error covariance measurement update:

Xk(+ ) = Xk(- ) + K k [Zk-hk(-)]

Pk (+) = [I-KkHk(-)] Pk(-) [I-KkHk (-)]T + KkRkKk T

where

K k = pk(-)HkT(-) [ Hk(-)Pk(-)HkT(-) + Rk]-i

(12)

(13)

(14)

For a complete development of the theory and meaning of these

equations, see the Gelb reference. The Joseph update in equation

(13) was found to be necessary for numerical stability, while

iterating the measurement update (Geib, p.190) was found useful

for converging large errors in the a priori estimate.

5. FILTER PERFORMANCE WITH SIMULATED DATA

A truth model was developed to provide realistic

measurements to the filter for a range of attitudes and dynamics

for testing purposes. The true spacecraft attitude and dynamics

were given by:

x = [ _, 6, @, 8, _ , Wl, Wp ]T (15)

= [ 0, 0, Wl, 0, Wp, 0, 0 ]T + U (16)
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basically the same model used in the filter, except with U, the

dynamic noise, added (Markley, et.al., (1988)). While this truth

model does not account for the effects of external torques and

does not model the dynamics of non-axisymmetrica! spacecraft, it

does permit the testing of the filter without the interference of

modeling error.

A battery of filter runs were performed to test the

convergence of the filter from a variety of a priori state

estimates. For these tests, only the data from a single Sun

sensor and a single Earth sensor were used to update the state

estimate. The covariance results of these tests showed that

state parameters #, _, Wl, and Wp were in all cases highly

correlated, to the largest degree in the tests where the nutation

angle e was small. Because of this high correlation, the filter

was able to estimate the angles _ and _ to only within about 5 °

at best.

Because of measurements h 2 and h 3 on the phase angle and

spin rate, respectively, the filter was however able to estimate

the sums _+_ (the phase angle) and Wl+W p (the spin rate) quite

accurately. Since most spinning spacecraft may be supported

adequately without the need for knowing the phase angle, much

less the component angles _ and @, the above observability

problem would probably not be an operational concern as long as

the attitude would be solved for adequately. Indeed, despite the

5 ° error in _ and#, the filter solves for the spin axis attitude

in terms of _ and 6 to sub-degree accuracy in all the test cases

that were run.

An explanation for the observability problem noted above

follows. The phase angle _+_ and spin rate Wl+W p are estimated

quickly and accurately by measurements h 2 and h3, respectively.

The only information to distinguish between _ and @ and between

w I and Wp, however, comes from measurement hl, the cosine of the

angle between the body Z axis and the sensed reference vector.

The measured angle will oscillate sinusoidally with amplitude e

and angular rate w I as the spacecraft principle Z axis rotates

about the angular momentum vector at the inertial nutation rate.

Also, the location of the angle on this sinusoidal curve permits

only two possibilities for angle _. For larger nutation angles 8

the filter can isolate both _ and w I using the variation in hl,

allowing for a fairly accurate determination of _, _, Wl, and Wp

when combined with measurements h 2 and h 3. For cases of small
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nutation angles or large measurement noise on hl, however, the

sinusoidal variation in h I becomes difficult to distinguish and

the uncertainty in _, _, Wl, and Wp becomes larger. In contrast

to a 5 ° best-case uncertainty in _ and _, the uncertainty may

grow to 30 ° or more for the smallest nutation angles.

Simulations have shown, however, that when the nutation angle

becomes small enough to cause large errors in _ and _, it is also

so small that it does not significantly affect the spin axis

determination either.

5.1 SAMPLE CONVERGENCE RESULTS

Figures 1 to 3 illustrate how the state estimate converges from

three different large a priori state errors. The true state is

compared to the Kalman filter estimate, and two error terms are

calculated. The spin axis error is approximated by:

SAE = [ d2(_) + d2(6) ].5 (17)

while the error in a "reduced state" with components _+_ and

Wl+Wp, instead of #, @, Wl, Wp, is given by:

(18)

RSE = [ d2( ) + d2(6) + + d2(e) + d2(Wl+W p) ].5

In these equations, d2( ) represents the square of the difference

between the estimated and actual values of the parameter in

parentheses.

The initial conditions for these runs are given in the

Appendix. Figure 1 shows that the filter almost immediately

solves for the spin axis to an uncertainty of only about 0.i °

from an a priori state with a 20 ° error. A more realistic

convergence scenario is illustrated in Fig. 2 for an a priori

estimate with errors on the order of 70 ° for _ and _, and on the

order of 20 ° for their sum. In practice, these angles should be

the most difficult state initialization parameters to calculate,

so these large errors are appropriate. Figure 2 shows that the

filter takes substantially longer to converge, but solves for the

spin axis to the same 0.i ° uncertainty level after about a

minute.

Figure 3 illustrates convergence from an a priori state with

errors on the order on 5 deg/sec for w I and Wp and 2 deg/sec for

their sum. The filter has the most difficulty converging with
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large nutation rate errors, because they generate large errors in

@ and _, as well, during convergence. This difficulty is

reflected in Figure 3, which shows that the filter requires over

five minutes to converge to a 0.I ° spin axis attitude

uncertainty. The large value of the error in the reduced state

is caused by the filter converging to a negative value of the

nutation angle 8; this result is perfectly acceptable, and serves

to illustrate that angle @ was driven 180 ° from its a priori

value due to the high a priori rate errors. It should be noted

that a priori rate errors as large as these should never have to

be input into the filter, since w I and Wp can be calculated

accurately beforehand, given the spin rate and moments of inertia

of the spacecraft (Wertz, p.490).
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5.2 ACCURACY RESULTS

The user of a Kalman filter is required to make an estimate

the magnitude of the dynamic and measurement noise affecting the

system and the data being filtered. The magnitude of this noise

is usually not known exactly, especially in the case of the

dynamic noise, and may not even be known to within an order of

magnitude. Since the magnitude estimate of these noise terms is

always in error to some degree, it is interesting to see how such

"mistuning" effects the filter results. The truth model enables

the actual error in the state estimate to be compared against the
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Kalman filter covariance, which indicates how well the filter

believes it is estimating the state.

Figures 4 through 8 plot as a function of time both the

actual spin axis error, approximated by equation (17) (the

difference between the true values and the KF estimates), and the

Kalman filter covariance corresponding to the same error. Figure

4 gives these results for a perfectly tuned filter, Figures 5

and 6 for assumed values for dynamic and measurement noise i0

times too high, respectively, and Figures 7 and 8 for those same

respective noises assumed to be I0 times to low. While the

actual and estimated errors do not agree exactly, even in the

perfectly tuned case, an overriding tendency can be noted: the

accuracy of the Kalman filter covariance seems to be much more

sensitive to the assumed measurement noise magnitude than to the

assumed dynamic noise magnitude. This is fortunate, since the

properties of the dynamic noise are usually known less well than

those of the measurement noise.

The parameters used the accuracy runs above are given in the

Appendix. In additional runs not shown here, for which the

dynamic noise and measurement noise were set to zero in both the

truth model and the Kalman filter, the actual and estimated

errors were both extremely low, as would be expected, since the

filter and truth model both use the same dynamics model.

5.3 FILTER SPEED

Besides achieving sub-degree accuracy, the Kalman filter for

the runs above was able to propagate and update in real time.

This was achieved by choosing an appropriate value for the

propagation step size; this step size could be set quite large

because of the linearity of the dynamics. Since the test cases

above were run assuming a spacecraft spin rate of about i0 rpm,

and since two measurements were assumed to be received each spin

period (a Sun angle and an Earth angle), the filter had to

process a measurement update every 3 seconds on the average to

operate in real time. The runs were executed on a 12 MHz 286-

class IBM PC clone. Use of a faster 386-class machine would

permit smaller dynamic propagation steps to be taken, or,

alternatively, a larger number of measurements to be processed

per spin period.

395



6. PERFORMANCE WITH ACTUAL SPACECRAFT DATA

Attitude sensor data were obtained from the DE-A spacecraft

in order to test the potential of the Kalman filter for actual

spacecraft ground attitude determination. The author was unable

to obtain data for a period with significant nutational motion,

however, so the following results only validate the filter's

performance for the nutationally-damped case.

Data from a single Earth sensor and a single Sun sensor were

entered into the Kalman filter as input. Nadir angles had to be

calculated beforehand from the original DE-A Earth sensor data,

and preca!culated biases were subtracted from the Sun angles

before they were input, as well.

TABLE 1 -- KF INPUT FOR DE-A DATA RUN

x O = [ 1.1968,-.17216, 0., 0.,-1.3209, -1.9568, .89226 ]T
Dynamic noise

[.001, .001, .005 002, .005_ .002, .002] T

Measurement noise = [ .0002, [01,i.00_2 ]_
Zb, principle frame = [ 0., 0., . ]_

Uncert. tin x o = [ .03, .03, 1.0, .005, 1.0, .001, .001 ]T

The filter input parameters for the run are given in Table

i. The estimated filter spin axis right ascension and

declination are plotted in Figures 9 and i0, with the batch

solution plotted as the straight line on the same plots. As

Table 2 shows, the difference between the Kalman filter and batch

spin axis directions is within the 0.21 degree uncertainty given

by both the Kalman filter and batch methods. The fact that the

Kalman filter and batch covariances agree so closely suggests

that level of dynamic noise, which the batch method does not

model, is of negligible significance in this data as compared

with the level of measurement noise.

TABLE 2 -- COMPARISON OF KF & BATCH SOLUTIONS

Spin Axis RA [deg]

Spin Axis Dec [deg]

Spin Axis Att [deg]

Att. Uncert. [deg]

Batch K F

68.2610 68.35

-9.4650 -9.54

0.2178 0.21

Difference

+0.089

-0.075

0.116
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7. UNMODELED ERROR SOURCES

7.1 SPACECRAFT ASYMMETRY EFFECTS

The Kalman filter described above successfully solves for

the nutating 3-axis attitude of an axisymmetrical spinning

spacecraft. No spacecraft is truly axisymmetrical, however,

since the two principle moments of inertia perpendicular to the

spin axis are always unequal to some degree. The Kalman filter

estimate will therefore suffer from modeling error when real data

from a nutating spacecraft is filtered. The Kalman filter should

in this case try to model the elliptical path of Zp about L for

the real spacecraft with a circular path. The modeling error

would depend on the extent of the spacecraft asymmetry, and would

cause both an increase in the uncertainty of the spin axis

attitude uncertainty and a shift in the solved-for spin axis

direction (Wertz, p.541). This error source could be removed by

correctly modeling the dynamics of an asymmetric spacecraft,

perhaps with a state based on the dynamics model of Melvin

(1989) .
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7.2 SENSOR BIASES AND MISALIGNMENTS

If not compensated for, sensor biases and misalignments can

cause large shifts in the solved-for spin axis direction. A bias

or misalignment that systematically changes the measured angle

between the spacecraft body Z axis and the reference vector may

cause a shift in the estimated spin axis direction: using the

analogy of the cone method attitude solution (Wertz, p.363) for

an Earth and Sun sensor, the spin axis direction, lying along the

intersection of the Sun and Earth cones, changes as the Sun and

Earth angles change from their true to their biased values. As

discussed below, attempts to solve for Sun and Earth angle biases

by adding them to the state vector were not successful. The

filter given above could easily compensate for precalculated

angle biases, however, by subtracting these biases from the

measured angles before using them in the update equations.

The relative misalignment of sensors in the plane

perpendicular to the body Z axis would change the timing of the

angular measurements, affecting the accuracy of the estimated

and _ angles, the w I and Wp nutation rates, and, to a much lesser

extent, the spin axis direction, as well.

7.3 Zp OFFSET FROM Zb

If the principle Z axis, Zp, of the spacecraft is offset

from the body Z axis, Zb, due to non-zero products of inertia Ixz

and Iyz, then Z b will "cone" about Z_ at the body nutation rate¥
(see Wertz, p.490). This coning motlon will add a sinusoidally-

varying error to measurements taken at a rate other than the spin

rate (e.g., from a magnetometer), but will simply add a constant

bias to measurements taken at the spin rate (e.g., from a Sun or

Earth sensor) since the direction of Zb relative to Zp and the

sensed reference vector V is the same for subsequent

measurements.

This bias may result in a systematic error in the estimated

spin axis direction for filters that assume Z b and Zp are

collinear. The effects of the Zb/Z p offset may be removed in

this Kalman filter, however, simply by entering the value of Zb

in the spacecraft principle reference frame into the measurement

equations (7) and (8). Vector Z b in the principle frame may be

calculated from the mass moment of inertia matrix.
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8. SENSOR MISALIGNMENT ESTIMATION PROBLEM

An attempt was made to solve for the angular biases noted

above in the Kalman filter, in hopes of removing this major

source of spin axis attitude error. A Sun angle bias and an

Earth angle bias were added to the state and dynamics model, and

the measurement equations were modified to account for the bias

terms. The truth model then produced simulated angular

measurements shifted by specified Sun and Earth biases, and the

Kalman filter was applied to the data to solve for the specified

biases along with the attitude.

The filter was unable to solve for the applied biases,

however, due to high correlations between these biases and the

attitude parameters. In particular, the filter was unable to

differentiate between the angular biases and errors in the spin

axis direction. A covariance analysis was performed using the

Attitude Determination Error Analysis System (ADEAS) (Nicholson,

et.al. (1988)) to determine to what accuracy the biases could be

expected to be solved for. The ADEAS results suggested that for

normal noise levels the biases could not be determined in the

Kalman filter to a useful level of accuracy.

9. CONCLUSION

In this paper, a new Kalman filter has been presented that

_ solves for the nutating 3-axis attitude of a spinning spacecraft

in real-time on a 286-class IBM PC clone to an accuracy

comparable to or better than the batch methods currently used.

The filter has been tested both with simulated data and with real

data from the DE-A spacecraft. Although a modified version of

the filter was unsuccessful in solving for biases on the measured

angles, the filter could compensate for these errors if biases

calculated in some other way were to be input into the filter.

Similarly, the filter can remove errors due a Z_/Z b offset by

using the easily-calculated Zb, p vector as input.

Attitude errors due to unequal spacecraft transverse moments

of inertia cannot be compensated for in this filter. Further

work on removing this error source by properly modeling the

general motion of an asymmetrical rigid body would be valuable.
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APPENDIX

CONVERGENCE TEST PARAMETERS

T
Truth Model Input: ( x = [_,6,_,8,_,Wl,W p] )

x O = [ 1.222, -.349, i., .01, i., 1.925, -.8777 ]T

Dynamic noise =
[.00001, .00001, .005, .0002, .005, .003, .003] T

Measurement. noise = [ .002, .002, .002 ]T

Zb, principle frame = [ 0., 0., I. ]T

Base Parameters for KF Runs:

x O = [ 1.172, -.399, .83, .0, .915, 1.915, -.8727 ]T

Dynamic noise =

[.000015, .000015, .0075, .0003, .0075, .0045, .0045 ]T

Measurement. noise = [ .003, .003, .003 ]T

Zb, principle frame = [ 0., 0., i. ]T

Uncert. in x o = [ .05, .05, .17, .02, .17, .01, .01 ]T

Run #i -- Large A Priori Spin Axis Attitude Error

x O = [ 1.469, -.596, .83, .0, .915, 1.915, -.8727 ]T

Uncert. in x o = [ .25, .25, .17, .02, .17, .01, .01 ]T

Run #2 -- Larqe A Priori _ and _ Errors

x O [ 1.172, .399, .2, 0., 2.6, 1.915, -.8727 ]T

Uncert. in x o = [ .05, .05, 1.5, .02, 1.5, .01, .01 ]T

Run #3 -- Larqe A Priori Nutation Rate Errors

x O = [ 1.172, -.399, .83, .0, .915, 1.82, -.8077 ]T

Uncert. in x o = [ .05, .05, .17, .02, .17, .2, .2 ]T

(Units: angles in radians, rates in radians/second)
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ACCURACY TEST PARAMETERS

Truth Model Input: ( x = [a,6,_,e,_,Wl,Wp]T )

x O = [ 1.222, -.349, i., .01, i., 1.925, -.8777 ]T

Dynamic noise = D =

[.00001, .00001, .005, .0002, .005, .003, .003] T

Measurement noise = M = [ .002, .002, .002 ]T

Zb, principle frame = [ 0., 0., I. ]T

Base Parameters for KF Runs:

X O = [ 1.172, -.399, .83, .0, .915, 1.915, -.8727 ]T

Zb, principle frame = [ 0., 0., I. ]T

Uncert. in X o = [ .05, .05, .17, .02, .17, .01, .01 ]T

pun #i -- Perfectly tuDed KF

Dynamic noise = D

Measurement noise = M

Run #2 -- Assumed Measurement Noise 10x Too Larqe

Dynamic noise = D

Measurement noise = I0. x M

Run #3 -- Assumed Dynamic Noise 10x Too Larqe

Dynamic noise = I0. x D

Measurement noise = M

Run #4 -- Assumed Measurement Noise 10x Too Small

Dynamic noise = D

Measurement noise = .I0 x M

Run #5 -- Assumed Dynamic Noise 10x Too Small

Dynamic noise = .i0 x D

Measurement noise = M

(Units: angles in radians, rates in radians/second)
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